Temperature lapse rate and methane in Titan's troposphere.

نویسندگان

  • C P McKay
  • S Chau Martin
  • C A Griffith
  • R M Keller
چکیده

We have reanalyzed the Voyager radio occultation data for Titan, examining two alternative approaches to methane condensation. In one approach, methane condensation is facilitated by the presence of nitrogen because nitrogen lowers the condensation level of a methane/nitrogen mixture. The resulting enhancement in methane condensation lowers the upper limit on surface relative humidity of methane obtained from the Voyager occultation data from 0.7 to 0.6. We conclude that in this case the surface relative humidity of methane lies between 0.08 and 0.6, with values close to 0.6 indicated. In the other approach, methane is allowed to become supersaturated and reaches 1.4 times saturation in the troposphere. In this case, surface humidities up to 100% are allowed by the Voyager occultation data, and thus the upper limit must be set by other considerations. We conclude that if supersaturation is included, then the surface relative humidity of methane can be any value greater than 0.08--unless a deep ocean is present, in which case the surface relative humidity is limited to less than 0.85. Again, values close to 0.6 are indicated. Overall, the tropospheric lapse rate on Titan appears to be determined by radiative equilibrium. The lapse rate is everywhere stable against dry convection, but is unstable to moist convection. This finding is consistent with a supersaturated atmosphere in which condensation-and hence moist convection-is inhibited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photochemically driven collapse of Titan's atmosphere.

Saturn's giant moon Titan has a thick (1.5 bar) nitrogen atmosphere, which has a temperature structure that is controlled by the absorption of solar and thermal radiation by methane, hydrogen, and organic aerosols into which methane is irreversibly converted by photolysis. Previous studies of Titan's climate evolution have been done with the assumption that the methane abundance was maintained ...

متن کامل

The dynamics of Titan's troposphere.

While the Voyager mission could essentially not reveal the dynamics of Titan's troposphere, useful information was obtained by the Cassini spacecraft and, particularly, by the Huygens probe that landed on Titan's surface; this information can be interpreted by means of numerical models of atmospheric circulation. The meridional circulation is likely to consist of a large Hadley circulation asym...

متن کامل

Pii: S0273-1177(01)00057-6

Although lightning has not been observed in Titan's atmosphere, the presence of methane rain in the troposphere suggests the possibility of electrical activity in the form of corona and/or lightning discharges. Here we examine the chemical effects of these electrical processes on a Titan simulated atmosphere composed of CH4 in N2 at various mixing ratios. Corona discharges were simulated in two...

متن کامل

Titan's carbon budget and the case of the missing ethane.

The retrieval of data from the Cassini-Huygens mission has revealed much about Titan's atmospheric-surface system and has precipitated more questions. One of these questions involves the lack of large reservoirs of ethane that were predicted by a variety of studies prior to the arrival of the Cassini-Huygens spacecraft. Using an updated and comprehensive photochemical model, we examine the natu...

متن کامل

Analytic investigation of climate stability on Titan: sensitivity to volatile inventory.

We develop a semiempirical grey radiative model to quantify Titan's surface temperature as a function of pressure and composition of a nitrogen-methane-hydrogen atmosphere, solar flux and atmospheric haze. We then use this model, together with non-ideal gas-liquid equilibrium theory to investigate the behavior of the coupled surface-atmosphere system on Titan. We find that a volatile-rich Titan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Icarus

دوره 129 2  شماره 

صفحات  -

تاریخ انتشار 1997